Yet Another Smart Process EditoR

Kees van Hee Reinier Post Lou Somers

Architecture of Information Systems Department of Mathematics and Computer Science TU Eindhoven

ESM 2005, Porto

TU/e

= 900

ヘロア ヘビア ヘビア・

Kees van Hee, Reinier Post, Lou Somers Yet Another Smart Process EditoR

Outline of this talk

The need for Yasper Petri nets for process modelling

• Why create Yasper?

A closer look at Yasper

- Yasper's modelling features
- Simulation in Yasper
- Implementation notes

Integration

• Yasper and other tools

Conclusion

TU

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline of this talk

The need for Yasper

- Petri nets for process modelling
- Why create Yasper?
- A closer look at Yasper
 - Yasper's modelling features
 - Simulation in Yasper
 - Implementation notes

Integration

• Yasper and other tools

Conclusion

Kees van Hee, Reinier Post, Lou Somers Yet Another Smart Process EditoR

TU

→ E → < E →</p>

Outline of this talk

The need for Yasper

- Petri nets for process modelling
- Why create Yasper?
- A closer look at Yasper
 - Yasper's modelling features
 - Simulation in Yasper
 - Implementation notes

Integration

Yasper and other tools

Conclusion

★ E → < E →</p>

Outline of this talk

The need for Yasper

- Petri nets for process modelling
- Why create Yasper?
- A closer look at Yasper
 - Yasper's modelling features
 - Simulation in Yasper
 - Implementation notes

Integration

• Yasper and other tools

Conclusion

(E) ► < E >

Conclusion

Petri nets for process modelling Why create Yasper?

TU)

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline of this talk

1

The need for Yasper

- Petri nets for process modelling
- Why create Yasper?
- 2 A closer look at Yasper
 - Yasper's modelling features
 - Simulation in Yasper
 - Implementation notes
- Integration
 - Yasper and other tools

Conclusion

Petri nets for process modelling Why create Yasper?

TU/e

→ Ξ → < Ξ →</p>

Systems modelling

Our main interests:

- business process modelling
- software systems modelling

An adequate modelling technique is

- clear
- powerful
- exact
- well-supported

Petri nets for process modelling Why create Yasper?

TU

★ E → < E →</p>

Process modelling

Process modelling must express concurrency / cooperation.

Petri nets are adequate, but need better support.

Most processes are *workflow nets*: with fixed start and end points.

Petri nets for process modelling Why create Yasper?

・ 同 ト ・ ヨ ト ・ ヨ ト

Yasper Why Yet Another Smart Process EditoR?

Many Petri net tools exist, mostly in the academic world. Our past contribution: the ExSpecT coloured Petri net tool.

Reasons to create another tool, Yasper:

- make workflows easy to simulate
- make Petri nets more palatable (for industry)
- Microsoft integration via .NET (for industry)
- integrate with other tools

Petri nets for process modelling Why create Yasper?

・ 同 ト ・ ヨ ト ・ ヨ ト

Use cases for Yasper

• project: Deloitte Industry Prints:

- "best/standard practices" business process models
- used by Deloitte consultants
- without a good modelling technique
- ullet \Rightarrow many ambiguities and plain errors
- project: OGO 2.2:
 - business software modelling/prototyping project
 - part of computer science curriculum
 - previously done with ExSpecT
- many other uses

Yasper's modelling features Simulation in Yasper Implementation notes

TU

イロト イポト イヨト イヨト

Outline of this talk

The need for Yasper Petri nets for process modelling Why create Yasper? 2 A closer look at Yasper Yasper's modelling features Simulation in Yasper Yasper and other tools

Conclusion

Kees van Hee, Reinier Post, Lou Somers Yet Another Smart Process EditoR

Yasper's modelling features Simulation in Yasper Implementation notes

TU/e

3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Modelling features: overview

basic Petri net elements

element	notation	description		
place	0	condition or resource		
transition		event or action		
arc		process flow		
token	\odot	(object in a) condition		

Kees van Hee, Reinier Post, Lou Somers Yet Another Smart Process EditoR

Yasper's modelling features Simulation in Yasper Implementation notes

Modelling features: overview

general purpose extensions

element	notation	description				
subnet	9	spread across multiple pages				
xor	\diamond	choice (split / join)				
role	(-)	executer / resource				
store		data involved				
inhibitor	•	negative condition (no tokens)				
reset		clear condition (clear tokens)				
Kees van Hee	Reinier Post I ou Somers	Vet Another Smart Process EditoB				

Yasper's modelling features Simulation in Yasper Implementation notes

ヘロン ヘアン ヘビン ヘビン

æ

Modelling features: overview

extensions for automatic simulation

element	notation	description		
time		processing time		
cost	(-)	processing cost		
case	\bigcirc	preserves workflow case		
emitor	E	generates workflow case		
collector	C	terminates workflow case	TU/e	

Yasper's modelling features Simulation in Yasper Implementation notes

A basic Petri net places, transitions, arcs, tokens

Getting fuel at a petrol station

・ロン ・ 一 と ・ 日 と ・ 日 と

Yasper's modelling features Simulation in Yasper Implementation notes

The net extended with Yasper features exhibiting most of them

Kees van Hee, Reinier Post, Lou Somers Yet Another Smart Process EditoR

Yasper's modelling features Simulation in Yasper Implementation notes

TU/e

æ

Extension: subnets

spreading content over multiple pages

Yasper's modelling features Simulation in Yasper Implementation notes

TU/e

3

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Extension: subnets

spreading content over multiple pages

The interface: references to places outside

Yasper's modelling features Simulation in Yasper Implementation notes

TU/e

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Extension: choice as known from flowcharts, UML activity diagrams

Choice elements indicate alternatives

Kees van Hee, Reinier Post, Lou Somers Yet Another Smart Process EditoR

Yasper's modelling features Simulation in Yasper Implementation notes

TU/e

3

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Extension: choice as known from flowcharts, UML activity diagrams

A basic Petri net equivalent

Kees van Hee, Reinier Post, Lou Somers Yet Another Smart Process EditoR

Yasper's modelling features Simulation in Yasper Implementation notes

TU/e

3

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Extension: stores

indicate (not simulate) data manipulation

Stores: data involved in transitions

Yasper's modelling features Simulation in Yasper Implementation notes

TU/e

3

イロト 不得 とくほ とくほとう

Extension: roles

executers / resources

Transitions can be executed by roles

Kees van Hee, Reinier Post, Lou Somers Yet Another Smart Process EditoR

Yasper's modelling features Simulation in Yasper Implementation notes

TU/e

3

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Extension: transition time and cost

Properties of task driver parks car General Advanced Connections work time performed by role(s) •∩• start pump space assistant Е Mean: available Deviation: processing cost ver unscrews cap Fixed: cap is of car arriving driver parks car Per time unit: ready for inse fueling wash Cancel OK

Time and cost assignments (for automatic simulation)

Yasper's modelling features Simulation in Yasper Implementation notes

TU/e

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Extension: workflow cases

case sensitive places, emitors, collectors

Emitors and collectors mark start and end of workflow

Yasper's modelling features Simulation in Yasper Implementation notes

TU/e

3

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Extension: workflow cases

case sensitive places, emitors, collectors

Case sensitive vs. case insensitive places

Yasper's modelling features Simulation in Yasper Implementation notes

TU/e

3

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Extension: workflow cases

case sensitive places, emitors, collectors

Transitions match cases on input places

Yasper's modelling features Simulation in Yasper Implementation notes

TU/e

3

(신문) (문)

Extension: special arc types

An example with more complex flow logic

Kees van Hee, Reinier Post, Lou Somers Yet Another Smart Process EditoR

Yasper's modelling features Simulation in Yasper Implementation notes

TU/e

★ E → ★ E →

Manual simulation in Yasper

Playing the token game in the diagram

Yasper's modelling features Simulation in Yasper Implementation notes

TU/e

3

ヘロト ヘ回ト ヘヨト ヘヨト

Automatic simulation in Yasper

Ric & Werk Mark Option Participation Mode Provide Participation Provide Option Participation Provide Option Participation Provide Option Participation Provide Option Participation Provide Option Participation Provide Option Participation Provide Option Participation Provide Option Participation Provide Option Participation Provide Option Participation Provide Option Participation Provide Option Participation Provide Option Participation Provide Option Participation Provide Option Participation Provide Option Participation Provide Option Participation Provide Option Participation Provide Option Participation Provide Option Participation Provide Option Participation Provide Option Participation Provide Option Participation Provide Option Participation Provide Participation Provide Participation Provide Participation Provide Participation Provide Par
Image:

Starting an automatic run

Yasper's modelling features Simulation in Yasper Implementation notes

Automatic simulation in Yasper

б	Yasper - D:\svn	\yasper.net\put	blications\yas	per-esm-2005\pix	\fueling-cased-	with-resources-fi	xed4auto.pnml			
	e Edit View Rol	es Options Help				time e	lapsed # ge 766	C model	npleted 764	Mode C Edit C Run manually C Run automatically
	report per emitor-	collector pair	Looffeered		luncia di man	and a firm	lunale films			Automatic simulation
	start	end	764	764	0	3	3.49	0		Continues unit unit unit unit unit unit unit unit
	resource utilization	n								
	rolename				% busy					
	doors de la				90.00					

The report

TU/e

3

ヘロト ヘ回ト ヘヨト ヘヨト

Yasper's modelling features Simulation in Yasper Implementation notes

TU/e

・ロト ・ 同ト ・ ヨト ・ ヨト

Yasper makes simulation work

In Yasper, simulations are

- based on exact execution semantics
- very easy to set up and run

Yasper's modelling features Simulation in Yasper Implementation notes

TU/e

・ロト ・ 同ト ・ ヨト ・ ヨト

Yasper makes simulation work

In Yasper, simulations are

- based on exact execution semantics
- very easy to set up and run

Yasper's modelling features Simulation in Yasper Implementation notes

TU/e

★ E → ★ E →

Yasper makes simulation work

In Yasper, simulations are

- based on exact execution semantics
- very easy to set up and run

Yasper's modelling features Simulation in Yasper Implementation notes

Automatic simulation demonstrates errors

and with alarming frequency, too

Yasper's modelling features Simulation in Yasper Implementation notes

Simulation makes Yasper work

In Yasper, simulations

- immediately pinpoint most modelling errors
- pinpoint deadlocks / bottlenecks in the process itself
- can estimate overall throughput and efficiency

TU

Yasper's modelling features Simulation in Yasper Implementation notes

Simulation makes Yasper work

In Yasper, simulations

- immediately pinpoint most modelling errors
- pinpoint deadlocks / bottlenecks in the process itself
- can estimate overall throughput and efficiency

TU

Yasper's modelling features Simulation in Yasper Implementation notes

Simulation makes Yasper work

In Yasper, simulations

- immediately pinpoint most modelling errors
- pinpoint deadlocks / bottlenecks in the process itself
- can estimate overall throughput and efficiency

TU

イロト イポト イヨト イヨト

Yasper's modelling features Simulation in Yasper Implementation notes

TU

・ 同 ト ・ ヨ ト ・ ヨ ト

Simulation makes Yasper work

In Yasper, simulations

- immediately pinpoint most modelling errors
- pinpoint deadlocks / bottlenecks in the process itself
- can estimate overall throughput and efficiency

Yasper's modelling features Simulation in Yasper Implementation notes

・ 同 ト ・ ヨ ト ・ ヨ ト

Software platform the choice for .NET

Many Petri net tools exist; few are for .NET. .NET = Microsoft's Java equivalent:

- (good languages, libraries, and IDE)
- Microsoft integration (SQL Server, Office, GUI)
- more acceptable to industry (Deloitte)

Drawback:

less portability (no Yasper on Linux)

Yasper's modelling features Simulation in Yasper Implementation notes

TU/e

ヘロン ヘアン ヘビン ヘビン

Architecture

Yasper's library dependencies

Yasper's modelling features Simulation in Yasper Implementation notes

TU/e

・ 同 ト ・ ヨ ト ・ ヨ ト

Availability

Yasper is partly free:

- Yasper program completely free to use (but don't sue us when it breaks)
- code not free (but talk to us when you want it)

Get Yasper from www.yasper.org

Yasper and other tools

TU)

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline of this talk

The need for Yasper

 Petri nets for process modelling
 Why create Yasper?

 A closer look at Yasper

 Yasper's modelling features
 Simulation in Yasper
 Implementation notes

Integration

• Yasper and other tools

Conclusion

Yasper and other tools

TU

→ Ξ → < Ξ →</p>

Development strategy: integration

Yasper's design philosophy:

- do not compete with other tools trying to duplicate their features
- work with them instead by translation / calling

Yasper and other tools

TU

イロト イポト イヨト イヨト

Areas of integration

- the use of data ("color"): interface Yasper with a "data manager"
- Petri net model checking / verification: interface Yasper with analysis tools
- non-Petri net modelling techniques: supply translations from/to Yasper

Yasper and other tools

Areas of integration

- the use of data ("color"): interface Yasper with a "data manager"
- Petri net model checking / verification: interface Yasper with analysis tools
- non-Petri net modelling techniques: supply translations from/to Yasper

TU

イロト イポト イヨト イヨト

Yasper and other tools

TU

イロト イポト イヨト イヨト

Areas of integration

- the use of data ("color"): interface Yasper with a "data manager"
- Petri net model checking / verification: interface Yasper with analysis tools
- non-Petri net modelling techniques: supply translations from/to Yasper

Yasper and other tools

TU/e

→ E > < E >

< 🗇 🕨

Methods of integration

- reuse of code libraries: see architecture diagram above
- common file formats PNML, extended PNML

Yasper and other tools

Examples of integration

- analysis tools, e.g. Woflan, INA
- workflow engine (Yasper/InfoPath)
- simulation-only (with BPMN modeller)
- process model translations (e.g. UML activity diagrams, ProVision, BPMN, BPEL, ARIS, μ CRL)

伺き くほき くほう

Outline of this talk

The need for Yasper

 Petri nets for process modelling
 Why create Yasper?

 A closer look at Yasper

 Yasper's modelling features
 Simulation in Yasper
 Implementation notes

 Integration

• Yasper and other tools

4 Conclusion

Kees van Hee, Reinier Post, Lou Somers Yet Another Smart Process EditoR

TU/

(< ∃) < ∃)</p>

< 🗇 🕨

- Yasper simplifies Petri-net based modelling and simulation
- Yasper's simulation is of great benefit in modelling
- integrating tools is hard, but pays off

TU/e

→ E > < E >

Ongoing/future work on Yasper itself

Provide more convenient editing:

- Iarger nets
- transformations
- consistency checks

TU/e

★ Ξ → ★ Ξ → .

Ongoing/future work on integration

- continue with workflow engine (Yasper/InfoPath)
- more process model translations
- better feedback from analysis tools
- Petri net transformation and generation
- process model repository
- etc.

→ E > < E >

Thank you

- Maarten Leurs
 - lots of Yasper programming
 - applying Yasper at Deloitte
- Andries van Dijk
 - support at Deloitte
- Olivia Oanea, Ivo Raedts, Jan Martijn van der Werf, a.o.
 - using Yasper, making suggestions, bug reports
 - writing related software
 - help with this presentation
- Till Tantau
 - the LATEX beamer package
- this audience
 - any feedback you have

・ 同 ト ・ ヨ ト ・ ヨ ト